
Runtime Verification meets Android Security

Andreas Bauer1,2, Jan-Christoph Küster1,2, and Gil Vegliach1

1NICTA Software Systems Research Group · 2The Australian National University

Abstract. A dynamic security mechanism for Android-powered devices based
on runtime verification is introduced, which lets users monitor the behaviour of
installed applications. The general idea and a prototypical implementation are
outlined, an application to real-world security threats shown, and the underlying
logical foundations, relating to the employed specification formalism, sketched.

1 Introduction

Most mobile platforms, such as Android [8], which is an open-source software stack
designed to power tablet PCs and smart phones, offer built-in security mechanisms to
protect users from various types of malware, often designed to spy on users or to exert
control over (parts of) a mobile device’s functionality. An example for the latter con-
sists in the sending of SMS messages secretly, without the user’s consent (cf. [11]).
However, the existing security mechanisms obviously cannot stop or prevent the ris-
ing number of attacks on these platforms: In its Q1/2011 threats report, security firm
Kaspersky remarks that “since 2007, the number of new antivirus database records for
mobile malware has virtually doubled every year.” In case of the Android platform,
security firm McAfee asserts in its Q2 threats report that, in fact, “Android OS-based
malware became the most popular target for mobile malware developers.” In light of
these developments various authors have proposed improvements to the built-in secu-
rity mechanisms of mobile platforms, and in particular to the Android platform which,
right now, constitutes the fastest growing platform on the market, and offers researchers
the advantage that its source code is freely available.

Arguably, two of the most feature-complete and well-documented security enhance-
ments recently made for Android are TaintDroid [4] and the Saint framework [12].
TaintDroid is an extensive modification of the entire Android stack that tracks the flow
of sensitive data through third-party applications at runtime. The modifications allow
TaintDroid to detect when sensitive data is leaked in whatever form, e.g., by sending an
email or SMS containing the sensitive data, or by uploading a file directly. To cater for
all these different scenarios, TaintDroid “taints” sensitive information to keep tracking
its use throughout the system. The central components of the Saint framework described
in [12] are a modified Android application installer and a so called AppPolicy Provider.
The custom installer ensures that at install-time only applications which do not vio-
late policies stored in the AppPolicy Provider can be installed. The authors of Saint
have gone to great lengths to check existing applications’ permissions for suspicious
permission requests and from that derived practically useful policies for that purpose.

While Saint is, more or less, true to Android’s own security mechanisms, which are
mostly based on assigning permissions statically to third-party applications, thereby

deciding which operations an application may or not perform at runtime, TaintDroid
goes further, in that it controls what happens with data at runtime. The latter, however,
comes at a price, in that such a high level of system instrumentation results in up to 27%
runtime overhead [4]. Moreover, an expected downside of such a comprehensive system
modification is to try and keep up to date with future releases of Android, which is under
active development by a world-wide consortium of OEMs. As long as said consortium
does not adapt (and thereby maintain) TaintDroid officially, it will be difficult to install
and adapt it for off-the-shelf devices.

Our aim therefore, is to introduce a more light-weight, yet dynamic security ex-
tension to Android based on a technique known as runtime verification. In a nutshell,
runtime verification subsumes techniques that aid in showing that an observed system
behaviour satisfies or violates a given specification, often given in terms of automata
or logic (cf. [1]). The methods developed in this area typically help to automatically
generate a monitor from a given specification, such that at runtime one must not con-
sider/store the entire behavioural trace, but merely consume observations in a step-wise
and therefore efficient manner. That is, the monitor passively observes the system and
raises an alarm if a specification is violated, or switches itself off if a specification has
been satisfied. While the complexity of monitor generation, depending on the specifica-
tion formalism at hand, can be very high (sometimes multiple exponents), the runtime
complexity is usually constant-time for each new observation. Runtime verification has
been employed in safety-critical contexts, but recently also emerged as a generic mon-
itoring and testing methodology for Java (cf. [7, 3]). Here, we use it specifically to
enhance system security, in that we monitor the individual behaviours of third-party
applications, installed on Android devices. To this end, users can specify what consti-
tutes a “suspicious behaviour”, e.g., an application starts at boot-time, later checks the
device’s GPS location, and then connects to the internet (possibly to transmit the loca-
tion). For each such policy, our implementation automatically creates a monitor that,
once active, will raise an alarm when such a sequence of events was produced by any
installed application. Admittedly, not every application which queries the GPS and then
connects to the internet is malicious, but many so called “spywares” are disguised as
seemingly harmless toy (e.g., wallpaper) applications, which have no legitimate reason
to behave in the aforementioned way.

Our proposed changes to Android are minimal compared to frameworks such as
TaintDroid, yet also target the runtime behaviour of applications rather than Android’s
static permissions. Unlike TaintDroid, however, our goal was not to trace data at run-
time, but to use simple behavioural specifications to detect a whole range of malicious
applications. In the area of computer security, this is known as behavioural detection,
where the aim is not to identify malware by comparing the applications in question
with signatures stored in a database, but to detect the behaviour of known and future
malware, which is expected to be similar to existing malware (for a survey cf. [10]).

2 Android Security Concepts in a Nutshell

Let us briefly discuss the important Android security concepts that are relevant to this
paper. Note that the aim of this section is not to give a comprehensive overview of the

2

Android architecture or its security concepts (cf. [8, 9, 5] for that).
Firstly, Android applications and most of the Android stack are written in Java,

whereas a modified Linux kernel serves as the platform’s low-level OS. Applications
on Android are “sandboxed”, meaning that each executes within its own virtual ma-
chine, and, from an OS point of view, as unique user; that is, unlike standard Linux
processes, which inherit the UID of the user who started them, Android applications
all have a unique UID. In other words, each application is treated as an individual user
from the low-level OS’s point of view1. This strict “sandboxing” basically ensures that
one application cannot modify (or even read—unless dedicated inter-process API calls
are being made) the data of another installed application. Unfortunately, however, it is
generally not true that the harm caused by a malicious application, is therefore restricted
to its “sandbox.” In fact, as also pointed out above, there are countless ways in which a
malicious application could exploit the device’s capabilities, or spy on its users.

Whether or not an application is allowed to use a certain functionality that an An-
droid device offers is primarily determined at install-time, when the standard Android
installer presents to the user a list of required application permissions. Users cannot re-
voke individual permissions that they may not feel comfortable with or that they do not
understand, rather they need to grant all permissions or cannot install the application.
In consequence, many users do not review the permissions at install-time [6]. In fact,
Android’s permission system is predominantly static, meaning that once an application
is installed, users have basically no means of controlling that application’s runtime be-
haviour. For example, once an application has been granted permission to send SMS, it
may do so in the background without requesting further user confirmation. According
to the official documentation [9], the lack of dynamic security mechanisms is a design
principle: “Android has no mechanism for granting permissions dynamically (at run-
time) because it complicates the user experience to the detriment of security.” Note that
the situation on other mobile platforms, like Nokia’s Symbian OS, is similar (cf. [2]).

3 Modelling Security Policies

We assume a set of predicate symbols P = P∪R, such that P∩R = ∅. Security policies
in our framework are based on the grammar ϕ ::= p(t1, . . . , tn)|r(t1, . . . , tn)|¬ϕ|ϕ ∧
ϕ|Xϕ|ϕUϕ|∀(x1, . . . , xn) : p. ϕ, where p ∈ P , r ∈ R are n-ary predicate symbols,
ti terms, and xi variables. The term structure is determined by variables and function
symbols of given arities. For a ground term t, t ↓ denotes its actual value, e.g., (2 +
3) ↓ yields 5, assuming the usual arithmetic functions to be part of our language and
interpreted accordingly. Variables range over specific domains such as strings, integers,
or any finite domain. Hence, in a statement ∀x : p. ϕ, p’s arity, p : τ → B, uniquely
determines the sort of variable x to be τ . We model observed application behaviour in
terms of actions which, in turn, are represented by ground atoms. Sets of actions are
called events. An application’s behaviour, seen over time, is therefore a finite trace of
events, e.g., {sms(1234)}{login(“user”)} . . . That is, the occurrence of some ground
atom sms(1234) in some trace at position i ∈ N0 means that at time i it is the case

1 There is an exception to this rule, but this is not relevant to this paper: applications which share
a developer’s signature may run under the same UID.

3

w, i |= p(t1, . . . , tn) iff p(t1 ↓, . . . , tn ↓) ∈ w(i);
w, i |= r(t1, . . . , tn) iff r(t1 ↓, . . . , tn ↓) is true; w, i |= ¬ϕ iff w, i 6|= ϕ;
w, i |= ϕ ∧ ψ iff w, i |= ϕ and w, i |= ψ; w, i |= Xϕ iff w, i+ 1 |= ϕ;
w, i |= ϕUψ iff there exists k ≥ i s.t. w, k |= ψ and w, j |= ϕ, for all i ≤ j < k;
w, i |= ∀(x1, . . . , xn) : p. ϕ iff w, i |= ϕ[c1/x1, . . . , cn/xn], for all p(c1, . . . , cn) ∈ w(i).

Fig. 1. Kripke semantics of the language wrt. infinite trace w and position i therein.

that sms(1234) is true. As is standard, the semantics of this language is defined via
infinite traces (see Fig. 1). Note how, unlike symbols from P , symbols from R do not
obtain their interpretations via the trace, but by some computational means assumed to
be available in the background when evaluating a policy over some trace.

At runtime, a monitor checking ϕ, will only see a prefix of an infinite trace, denoted
u, and therefore return > if u is a good prefix ofϕ, ⊥ if u is a bad prefix, and ? otherwise.
This is akin to the 3-valued finite-trace semantics for LTL introduced in [1], except that
our monitor not necessarily reports minimal prefixes. For brevity, we cannot give a
detailed, step-wise semantics of our monitor, but refer the reader to Sec. 4 for an outline
of our algorithm based on the well-known concept of formula progression. Let us now
look at example policies, specified in this language and the usual syntactic “sugar”.

Recall the promise of our approach and, more generally, of behavioural detection
is that it allows not only the detection of specific, known malware, but of new threats
as they appear, so long as their damaging behaviour, exhibited on a device, is suffi-
ciently similar to already known malware. Indeed, the databases by security firms such
as McAfee, not only list specific malicious applications for Android, but entire evo-
lutions, classified by abstract IDs, such as Android/NickiSpy, to indicate that there
exist multiple incarnations of the same malware, realised in differently branded ap-
plications. Android/NickiSpy, for example, represents a family of applications which
secretly record a user’s phone conversation on SD card in the compressed .amr format
(adaptive multi-rate). We can detect this family of malware via a simple policy,

G∀x : sd write. ¬regcomp(x, “.*\.amr”),

where regcomp(x, y) is true if the string x, in this case representing a file name, is in
the language given by the regular expression that is represented by string y. However,
should there be legitimate recording of .amr files to SD card, the user is always able to
ignore any reported violations of this policy.

As another example, consider the first ever Android Trojan (Trojan-SMS.Android-
OS.FakePlayer.a), disguised as media player, which secretly sent SMS messages to
expensive premium numbers [11]. This led us to monitor a more general behaviour,
i.e., to be notified if any application sends an SMS to a number not in our contacts:

G∀x : sms. contact(x).

While there may be legitimate violations of this policy, its monitoring at least lets users
keep track of which applications exhibit this type of behaviour. It’s then up to them to
decide to remove an application, if they feel it is not justified.

Finally, a lot of malware is “spyware”, meaning that private user data or device
details are sent out to remote locations. For example, all applications of type An-
droid/Actrack.A send GPS location, battery and radio status to a central internet server

4

controlled by the vendor at regular intervals. A policy we may want to monitor in re-
gards to that, more generally, could be “no application should request the GPS location,
and later connect to the internet (possibly to transmit said location)”, which is captured
by the following formula, where connect(x) appears in a trace whenever the applica-
tion under scrutiny triggers the Linux system call connect to IP address x, and gps
whenever it requests the device’s current location:

G(¬((F∃x : connect) ∧ gps)).

4 Implementation

Linux kernel

(C API)

user space

kernel space

Monitor

application
App-

lications

trace

operations

syscalls

events

Custom

kernel

module

Android Framework

(Java API)

Fig. 2. Architecture.

Currently, our monitors are realised in terms of a
stand-alone Android application, written in Java, with
a simple GUI that allows users to enter policies. As
Android applications are “sandboxed” and therefore
unable to monitor each other, we also had to mod-
ify the Android stack to facilitate runtime verification
in the above sense. To this end, we made some very
small, local modifications to exactly two files of the
Android system in order to get notified when an ap-
plication requests permission to perform specific op-
erations or when system events are created, e.g., an
application tries to send an SMS message, the system reports low battery status, etc.
It is our expectation that this way, our changes will easily carry over to future releases
of the platform. Unfortunately, however, it is not possible to obtain all relevant data by
intercepting the high-level Android permission checks. In many cases, Android directly
consults the underlying, low-level OS if an application is allowed to perform an opera-
tion, e.g., based on the application’s UID membership in a Linux group. Examples are
the opening of a network socket or the writing to an SD card. But also to extract the ac-
tual phone number of an outgoing SMS message, we need to monitor the Linux write
system call (or rather, its arguments) as there are no means to obtain this information in
user space without having to modify many additional Android files, but then much to
the detriment of portability and maintainability of our solution. For reasons of modular-
ity, we “outsourced” this type of information gathering in our own kernel module that
dynamically loads during boot2. The architecture is sketched in Fig. 2, where the grey
areas are constituents of our system, and arrows indicate relevant information flow.

The actual monitoring of a temporal logic formula is currently realised by means of
formula progression; that is, for each formula ϕ and each application, there is a function
prog, taking a first-order LTL formula and an event as input and returning a first-order
LTL formula, such that σw |= ϕ iff w |= prog(ϕ, σ). For example, prog(Gψ, σ) =
prog(ψ, σ)∧Gψ, where prog(ψ, σ) may return > or ⊥ immediately or after expanding
to a more complicated formula. The aforementioned 3-valued finite-trace semantics is
obtained by mapping all resulting formulae other than > or ⊥ to the ?-value.

2 Note that there are numerous Android applications, even on the official Market, that also re-
quire the installation of custom kernel modules (e.g., DroidWall requires the netfilter module).

5

5 Conclusions & Future Work

Although our work is preliminary, arguably, our results show not only that runtime
verification is generally feasible on Android devices, but also that it can improve sys-
tem security by identifying known and yet unknown malware. Due to active develop-
ment, our code is still unreleased, but we have prepared a system demonstration video:
http://baueran.multics.org/droid/. Note also that the performance overhead, when exe-
cuted on an Android emulator as well as on an actual phone, was negligible even in this
preliminary, unoptimised version of the code. However, there can be cases, where the
runtime performance of our monitoring procedure necessarily deteriorates over time,
i.e., the longer the observed trace gets, the longer the formula becomes that needs to
be progressed. Although none of our examples triggers this particular problem, there
is a need to characterise fragments of our policy language that lead to monitoring al-
gorithms whose complexity at runtime can be guaranteed to depend only on the size
of each new event. One such fragment is obtained by discarding the first rule of both
the syntax and the semantics, respectively (see Sec. 3), and assuming predicate symbols
fromR to be rigid. Additionally, the latter must be either at most unary or, if n-ary, their
individual use restricted to at most one variable. However, one of the reasons why we
have not adopted this fragment here is due to a symbol like contact whose interpreta-
tion, arguably, needs to be flexible, i.e., the user can add or delete contacts at any time.
Finding useful fragments in the above sense that are also practically relevant is subject
of ongoing work.

Acknowledgements: We would like to thank the anonymous referees for their helpful
feedback. NICTA is funded by the Australian Government as represented by the De-
partment of Broadband, Communications and the Digital Economy and the Australian
Research Council through the ICT Centre of Excellence program.

References

1. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL. ACM
Trans. Softw. Eng. Methodol. (TOSEM), 20(4):14, 2011.

2. A. Bose, X. Hu, K. G. Shin, and T. Park. Behavioral detection of malware on mobile hand-
sets. In Proc. 6th Int. Conf. Mobile Systems, Applications, and Services (MobiSys), pages
225–238. ACM, 2008.

3. F. Chen and G. Rosu. Java-MOP: A monitoring oriented programming environment for Java.
In Proc. 11th Tools and Alg. for the Construction and Analysis of Systems (TACAS), pages
546–550. Springer, 2005.

4. W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taint-
Droid: an information-flow tracking system for realtime privacy monitoring on smartphones.
In Proc. 9th USENIX symp. on OS Design and Implementation (OSDI). USENIX, 2010.

5. A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions demystified. In
Proc. 18th ACM conf. Comp. and Comm. Security (CCS), pages 627–638. ACM, 2011.

6. A. P. Felt, K. Greenwood, and D. Wagner. The effectiveness of application permissions. In
Proc. 2nd USENIX conf. on Web application development, pages 7–19. USENIX, 2011.

7. A. Goldberg, K. Havelund, and C. Mcgann. Runtime verification for autonomous spacecraft
software. In IEEE 2005 Aerospace Conference (IEEEAC), pages 507–516. IEEE, 2005.

6

8. Google Inc. Android development site. http://developer.android.com/.
9. Google Inc. http://developer.android.com/guide/topics/security/security.html.

10. G. Jacob, H. Debar, and E. Filiol. Behavioral detection of malware: from a survey towards
an established taxonomy. Journal in Computer Virology, 4(3):251–266, 2008.

11. J. Leyden. First SMS Trojan for Android is in the wild. Web site, The Register, Aug. 2010.
12. M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich application-

centric security in Android. In Proc. Annual Comp. Sec. Applications Conference (ACSAC),
pages 340–349. IEEE, 2009.

7

